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Purpose of review

To review recently published research into the use of dietary cysteine and/or its

derivatives as functional food supplements that will enhance antioxidant status and

improve outcome in certain diseases.

Recent findings

L-cysteine is now widely recognized as a conditionally essential or (indispensible)

sulphur amino acid. It plays a key role in the metabolic pathways involving methionine,

taurine and glutathione (GSH), and may help fight chronic inflammation by boosting

antioxidant status. In stressed and inflammatory states, sulphur amino acid metabolism

adapts to meet the increased requirements for cysteine as a rate-limiting substrate for

GSH. Critically ill patients receiving enteral or parenteral nutrition, enriched with

cysteine, exhibit decreased cysteine catabolism and improved GSH synthesis. The

naturally occurring cysteine-rich proteins, whey or keratin, have the potential to be

manufactured into high quality, high cysteine-containing functional foods for clinical

investigation.

Summary

Cysteine-rich proteins, such as keratin, may have advantages over the simple amino acid

or its derivatives, as nutraceuticals, to safely and beneficially improve antioxidant status

in health and disease.
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Introduction

Cysteine, one of only two sulphur-containing amino acids

making up the 22 proteinogenic amino acids, plays a

critical role in cell metabolism. Its unique ability to form

interchain and intrachain disulphide bonds, with other

cysteine residues, nonenzymatically, also gives it an

important role in protein structure and protein folding.

A transulphurization pathway converts methionine,

via homocysteine to cysteine, by enzymatic action,

in the liver, kidney, intestine and pancreas. Many of

the enzymes involved in methionine metabolism are

increased in activity on ingestion of a high protein diet

[1]. The conversion is an irreversible process (Fig. 1) [1],

which explains why methionine is classified as an essen-

tial or indispensible amino acid. Cysteine, on the con-

trary, is dispensible – providing adequate methionine is

available – but has been recently categorized as ‘con-

ditionally essential’ in certain pathological conditions

associated with inflammation. Cysteine has a sparing

effect on methionine metabolism and indirectly increases

methionine and its metabolites, markedly reducing the

requirements for dietary methionine [2,3].
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Cysteine contributes to many biological pathways,

notably those involved in glutathione (GSH), taurine

and methionine metabolism. Cysteine metabolites play

a critical role in antioxidant defenses, which help ame-

liorate chronic inflammation. However, as we age, levels

decrease dramatically [4]. Cysteine is lacking in many

diets, and a dietary deficiency has been linked to ageing

and various diseases. Cysteine can be generated from

methionine via S-adenosylmethionine and homocys-

teine, but this pathway may be inactive in neonates,

patients with liver disease, surgical stress and trauma.

GSH is a tripeptide of glutamate, cysteine and glycine

and is one of the most abundant, ubiquitous, intracellular

peptides, produced intracellularly in all organs. Quanti-

tatively the most important and abundant antioxidant in

humans, plentiful GSH is obtained in the diet from fruits

and vegetables, but dietary GSH does not result in

increased plasma GSH. The majority must be synthes-

ized, primarily in the liver. Thence around 80% is

exported to the plasma and the kidneys for detoxification.

GSH synthesis is limited by cysteine availability and

activity of the enzyme, glutamate cysteine ligase [5].
DOI:10.1097/MCO.0b013e32834c1780
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Key points

� Cysteine and GSH metabolism is impaired in neo-

nates and the critically ill.

� Enteral nutrition enriched with cysteine can

decrease cysteine catabolism and improve GSH

status.

� There is a positive association between plasma

cysteine and reduced cysteine redox state after

ingestion of a diet high in cysteine and methionine.

� Keratin has the highest cysteine content of all

natural proteins, and can be processed into a high

quality nutraceutical supplement for clinical investi-

gation.
Peroxides increase the transulphurization flux that pro-

vides some cysteine for GSH synthesis, whereas anti-

oxidants decrease transsulphurization. Boosting GSH

synthesis may aid in ageing, seizure, Alzheimer’s disease,

Parkinson’s disease, liver disease, cystic fibrosis, sickle

cell anaemia, HIV/AIDS, cancer, stroke, and diabetes [6].

Taurine, the most abundant amino acid in vivo, has an

intracellular concentration of 25 mmol/l and may also be

‘conditionally essential’ for human infants. It is synthes-

ized from cysteine in the liver and brain and is required for

energy and antioxidant metabolism [7]. A person on a

meat-eating diet will ingest between 40 and 400 mg taurine

daily but vegetarians receive negligible taurine [8�].
Supplementation with free cysteine and its
analogues
Dietary supplementation with GSH or cysteine would be

the ideal adjunct to many antioxidant therapies, but orally
Figure 1 Metabolic pathways for cysteine and other sulphur amino
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half life in plasma and may not raise plasma taurine

significantly [7,9].

Cysteine itself readily oxidizes to the insoluble cystine

dimer. Both free cysteine and cystine are toxic at high

levels in the diet [10,11] but dietary cysteine in protein

form as well as cysteine derivatives, largely lack this

toxicity when included in animal diets [10,12] and can

effectively substitute for free cysteine to boost anti-

oxidant defences. The derivative N-acetyl-cysteine

(NAC) has promising bioactivity in vitro and has been

trialled with some successes, but thus far, NAC has not

lived up to its promise in large-scale controlled clinical

trials [13]. There is considerable debate on whether

NAC is effective at all for some conditions as well as a

growing recognition that there is a subset of individuals

who might be at high risk from side-effects; including

nausea, rash, wheezing, gastrointestinal problems and

other adverse events.

In this review, we highlight current research on dietary

cysteine and suggest that cysteine-rich proteins, rather

than free cysteine compounds, may be worthy of further

study as adjuncts to established therapies and as pre-

ventatives against inflammatory diseases.
The redox mechanisms of cysteine and its
metabolites
A high level of oxidative stress constitutes one of the

main underlying mechanisms contributing to the patho-

physiology and clinical features of many acute critical

care situations as well as chronic diseases such as AIDS,

cancer, inflammation, cardiovascular and neurological

diseases. Critical illness increases production of reactive

oxygen species (ROS) leading to oxidative stress through

activation of the phagocytic cells of the immune system

and vascular damage caused by ischaemic reperfusion.

Systemic inflammatory response syndrome (SIRS) is a

significant contributor to morbidity and mortality in ICU

patients and it is now recognized that oxidative stress,

leading to a strong and persistent inflammatory response,

constitutes a serious factor for development of multiple

organ failure (MOF) [14]. However, there is an elaborate

defence system, involving antioxidants such as GSH,

operating to protect cells from oxidative stress. These

antioxidants quench ROS, delay oxidation of substrates,

and can have beneficial effects on infectious complication

rates and incidence of MOF.
Cysteine and glutathione in disease states
Intracellular GSH can be influenced by the availability of

exogenous GSH precursors. The body has the capacity to

synthesize GSH from cysteine, methionine, glutamate
and glycine from foods. However, in the early stages of

fasting and in metabolic stress, supplies of glutamine,

cysteine and methionine are interrupted or reduced

[15]. Consequently, GSH depletion is associated with

severity of disease, increased morbidity and mortality.

Critically ill patients with MOF and/or chronic obstruc-

tive pulmonary disease have depleted GSH, with higher

plasma cysteine levels than in whole blood, indicating a

low intracellular concentration. During injury and trauma,

ICU patients exhibit low GSH status and decreased

muscle protein synthesis, suggesting that there might be

an increased requirement for substrates such as cysteine.

In stress, muscle is known to serve as an amino acid

reservoir, delivering substrates for anabolic reactions.

Consequently, patients receiving enteral nutrition

enriched with cysteine, appear to exhibit decreased

cysteine catabolism and increased cysteine utilization,

reflected by an improved sulphur balance due to

increased GSH synthesis. Oral cysteine supplementation

at 11 g/kg in septic rats maintains blood GSH status,

improves fractional muscle protein synthesis rates and

improves recovery [16]. This contrasts with NAC supple-

mentation in HIV/AIDS, in which cysteine and GSH

synthesis rates in erythrocytes are normalized, suggesting

a different pathogenesis.
Bowel disease
Sulphur amino acid supplementation reduces the ileal

and jejunal, but not the colonic GSH/the oxidized dimeric

form of GSH redox state in resected (mid-jejuno-ileal) but

not control transected (small bowel) rats [17��]. There was

a reduction in cysteine redox state in resected, but not

control rats, which was accompanied by an increase in

growth rate in ileal and partially in jejunal, but not in

colonic crypt, indicating that different parts of the intestine

respond differently to dietary sulphur amino acids.

There is a distinct tissue-specific pattern of cysteine

metabolic enzymes, recently reviewed [18��,19]. The

presence or absence of cysteine metabolic enzymes in

different tissues plays a major part in determining tissue

and subsequent plasma cysteine levels in response to

dietary supplementation. For example, colon tissue has a

low amount of cysteine dioxygenase (CDO) but relatively

high amounts of desulfuration enzymes. Stipanuk and

Ueki are currently engaged in further studies of CDO

regulation, the results of which are eagerly awaited.
Cardiovascular disease
Oxidation of cysteine and GSH and the associated

improvement of both the cysteine and GSH redox states

are correlated with markers of cardiovascular disease

[20��]. A diminished cysteine redox state is accompanied
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by cellular signalling events that are anti-inflammatory;

conversely, increasing the cysteine redox state increases

proinflammatory pathways. For example, the external

cysteine redox state can directly regulate monocyte

adhesion to aortic endothelial cells and mitochondrial,

but not nuclear or cytoplasmic oxidation. These changes

are at least partially mediated by changes in plasma

membrane thiols and mitochondrial thioredoxin [21��].

This implies that reducing the plasma cysteine redox

state might be beneficial either as a preventive or treat-

ment adjunct for cardiovascular disease. Some confir-

mation of this hypothesis is provided in an elegant

study of human dietary supplementation and plasma

redox states [22��]. When healthy humans ingested a

diet relatively high in cysteine and methionine (up to

117 mg/kg/day), there was a positive association between

plasma cysteine concentration and cysteine redox state.

However, there was no effect on plasma GSH or GSH

redox state during these studies.

In monocyte cultures, improving the cysteine redox

state increases proinflammatory interleukin (IL)-1 b

expression [23��]. In the same study, dietary cysteine

and methionine decreased the plasma cysteine in mice,

but not the GSH redox state, while reducing plasma and

lung IL-1 b expression in response to a proinflammatory

challenge. In human participants there were correlations

between (i) plasma IL-1 b and increased cysteine redox

state, (ii) TNFa and plasma redox state increase and (iii)

plasma cysteine and IL-1 b decrease [23��]. These data

further confirm the link between cysteine supplement-

ation and the resultant cysteine redox state and anti-

inflammatory activity.
Liver disease
Men are more susceptible than women to liver damage.

In a study of sex differences, female mice had slightly

higher levels of GSH metabolism enzymes. The authors

hypothesize that increased levels of GSH enzymes are at

least partly responsible for increased resistance of female

mice to liver injury [24�].

NAC improved markers of liver health during treatment

of bile duct obstruction prior to endoscopic retrograde

cholangiopancreatography [25]. The authors attributed

this effect to the mucolytic action of NAC, which might

reduce the viscosity of bile. In a mouse model of liver

cirrhosis, oral NAC increased survival and restored cyto-

solic and mitochondrial GSH [26]. This recovery was

accompanied by improvements in several markers of liver

health. The mouse model was a previously developed

liver-specific knockout of a GSH synthesis enzyme [27]

so GSH must have either been synthesized outside of the

liver tissue in response to NAC, or synthesized locally

through an alternate pathway.
Progression of nonalcoholic fatty liver disease is worsened

by antioxidant depletion. In a GSH-deficient knockout

mouse model, in which liver GSH is 15% of normal, the

mice appeared to adapt to decreased GSH [28�]. A con-

sequence of this adaption was that knockout mice, fed

a methionine and choline-deficient diet (MCD) that

would induce liver disease in genetically normal animals,

were protected against liver disease by the MCD diet.

Adaptation to low GSH in the knockout mice was indi-

cated by substantial changes in gene expression of meta-

bolic pathway enzymes.

Paracetamol (acetaminophen), one of the most fre-

quently used drugs, is detoxified by cysteine and its

metabolites. Paracetamol intake causes oxidation of

cysteine, but has no effect on the GSH redox state,

regardless of dietary sulphur amino acid intake levels

[29]. Pujos-Guillot and colleagues reasoned that long-

term paracetamol usage, particularly in the elderly for

arthritic pain, might increase the requirement for

cysteine [30]. They found that older persons responded

to long-term paracetamol by increasing their dietary

protein intake substantially and as a consequence there

was no depletion of cysteine and its metabolites.

S-allyl-cysteine, a component of garlic extract, is capable

of reducing diabetic-induced glycoproteins in rat liver

and kidney [31]. At the same time, blood and urine sugars

are partially controlled. In this context it is possible that

high cysteine protein is just as effective as NAC in

negating the effects of a high sugar diet [32].
Cancer
The General Population Nutrition Trial, conducted in

Linxian, China, has confirmed the association between

serum cysteine and risk of some cancers. In that study, a

higher serum cysteine quartile was associated with

reduced risk of both gastric and oesophageal cancers

[33��]. This relationship was even stronger in people

aged over 60 years. It is worth noting this trial finished

around 1991, but thanks to wise planning, the stored

samples were analysed for cysteine using ‘modern’

methods.
Supplementation with cysteine and its
analogues
A detailed study of the fate of dietary and arterial cysteine

in minipigs showed, for the first time quantitatively,

that net cysteine flux accounts for only 60% of dietary

cysteine, suggesting further sequestration of 40% of

cysteine in the intestine [34��]. Importantly, the portal

drained viscera (PDV) released an additional 15–25% of

nondietary cysteine, originating either from tissue break-

down, methionine metabolism or from reabsorption of
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cysteine from endogenous secretions of biliary GSH.

Thus, in a stress and inflammation model, sulphur amino

acid metabolism adapts to cover the increased require-

ments of cysteine, demanded by the need for increased

GSH synthesis. These data may partly explain the reason

for inefficient oral cysteine availability, suggesting that,

during supplementation, the colon, stomach, pancreas

and spleen (PDV) could preferentially use circulating

cysteine and methionine-containing peptides over

dietary cysteine to synthesize more GSH. This raises

the possibility that dietary cysteine contained within

peptides and proteins will be more effective in boosting

cysteine metabolism in SIRS and other inflammatory

states than free dietary cysteine.
Clinical nutrition
The use of cysteine in parenteral nutrition has been

recently reviewed by Yarandi et al. [35�] who noted the

absence of convincing clinical evidence for benefits of

sulphur amino acids in parenteral nutrition. In neonates

the benefits of sulphur amino acids in parenteral nutrition

mixtures is even less clear, especially given the well

known low solubility and instability of free cysteine in

aqueous solution. Early studies showed that neonates

under stress lack enough cysteine to synthesize sufficient

GSH [36]. In a small study of five sick infants, Courtney-

Martin et al. [37�] studied whether added methionine

could replace cysteine and boost GSH synthesis. They

observed GSH was synthesized in the presence of par-

enteral methionine only. When cysteine was added as

well as methionine, there was no increase in erythrocyte

GSH and there was no significant difference in plasma

cysteine. Clearly, there is a need to boost cysteine

metabolism in parenteral nutrition patients using new

strategies, but studies in neonates are challenging and

more research is needed in this important area.
Naturally occurring cysteine-rich proteins
The most natural, and therefore, one might argue the

best source of cysteine is dietary protein, in which it is

present as the dimer, cystine, including linked sulphur–

sulphur bonds. These disulphide bonds can be readily

cleaved in vivo, or by heat or mechanical stress in the

laboratory to liberate the monomer, cysteine. However,

there is a dearth of published data on the nutritional value

of high cysteine proteins.

Defatted egg protein, a byproduct of lecithin production,

is digested with an enzyme mixture and then solid matter

is centrifuged out to make egg yolk peptides (EYP). The

protein has antioxidant activity and reduces peroxide-

induced secretion of IL-8, a proinflammatory cytokine

[38]. But there was no EYP rescue effect on the reduction

of cell proliferation induced by peroxide. In a pig model,
GSH was induced in response to both peroxide and EYP/

peroxide compared with isotonic saline infusion. GSH

was induced in both the duodenum and jejunem, but not

the ileum or colon. Erythrocyte GSH was induced by

both peroxide and EYP/peroxide infusion, with the effect

being more marked in the EYP/peroxide group. EYP was

capable of decreasing the degree of peroxide-induced

oxidant markers in pigs. Taken collectively, the data

suggest that rather than acting as a high cysteine protein,

EYP functions as an antioxidant protein.

Milk proteins, in particular cysteine-rich whey protein,

are known for their ability to raise GSH. Although there is

a positive relationship between milk consumption and

growth [39], there can be negative impacts [40]. Allergies

to cow’s milk do develop but frequently disappear by

adulthood. Allergies to whey proteins occur in children

but they can be mostly ameliorated by hydrolysation [41].

Lactose intolerance, real or perceived, affects a substan-

tial segment of Western populations [42] and an even

larger proportion of the rest of the world [43]. Consump-

tion of whey protein may also contribute to teen acne as a

consequence of its high insulinotropic activity [44].

SelenoCysteine and SelenoMethionine [45] are abundant

in eggs, and various other natural protein fractions are rich

in selenium and cysteine [46]. The many selenoproteins

are capable of modulating redox signalling, including

cysteine and GSH redox states [47�]. Dietary selenium

can modulate selenoprotein redox activity, so it makes

sense that dietary selenoproteins might also modulate

general redox states. Selenoproteins are essential for

keratinocyte function and skin resistance to oxidative

damage [48�].

Plant proteins tend to be deficient in sulphur amino acids.

With aims towards improving both animal feed and

human dietary applications, sulphur proteins have been

expressed in plants. A recent study in sulphur protein-

expressing soybean raises some doubts about current

approaches in this area, as the new bean varieties have

allergic potential, and may limit animal growth [49].

Therefore, the sulphur-containing proteins and plants

selected for insertion need to be reconsidered, or altern-

atives for cysteine supplementation must be found.

Keratins are cysteine-rich proteins abundant in feather,

skin, horn, nail, hair and wool. Hydrolysation by enzy-

matic or chemical means is required to achieve digest-

ibility. Feather keratins have been trialled extensively as

animal feed supplements and have the highest cysteine

of the major food proteins [50]. Occurence of keratin in

the human diet is widespread. In the USA, keratin-

containing nutritional supplements have been available

for over 50 years and it is not considered a new dietary

ingredient. Recorded use in Europe dates back to 1911, as
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evidenced by a monograph for keratin in the British

Pharmaceutical Codex for tablet coating. Acute and

chronic toxicity studies in a range of animal species have

demonstrated no effect on LD50 and the common bio-

chemical markers of toxicity, suggesting keratin is safe,

which is not surprising given the widespread distribution

of keratin in the human diet [51–53]. Keratin is present

in all animal cells, being a principal component of the

cytoplasm. It can be isolated as a pure protein powder,

soluble in water above pH 4, with a relatively small

variation in amino acid content compared with proteins

from other sources and may contain bioactive sequences

that are yet to be discovered [54��]. However whether any

new studies may demonstrate allergenicity in a subset of

individuals remains to be seen. Its potential as a nutra-

ceutical or functional food component is currently under

extensive investigation.
Conclusion
The sulphur amino acid, L-cysteine has a critical role in

methionine, taurine and GSH metabolism. Oral or ent-

eral supplementation with diets enriched with cysteine

can lead to increased cysteine utilization and improved

antioxidant status in various inflammatory conditions,

but the simple amino acid and its derivatives, such as

N-acetylcysteine, have limited practical applications in

clinical nutrition because of stability issues and potential

adverse reactions.

Cysteine-rich proteins, such as keratin, are abundant, and

if processed correctly should result in high quality and

demonstrably well tolerated nutraceuticals for use in a

variety of clinical applications. Further basic research and

clinical studies to elucidate the posology, mechanisms of

action and potential clinical benefits are now necessary.
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